• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar

ALLSIGNALPROCESSING.COM

Learn signal processing online

  • Home
  • Courses
  • Courses
  • About
  • FAQ
  • My Account
  • Blog
  • News
  • Contact
  • Login
  • Logout
  • Get All Access

Random Processes and Stationarity

August 10, 2019 by

In this lesson you will learn definitions of a random process and stationarity. You will also learn how second-order statistics – the covariance and correlation functions – characterize stationary random processes. This understanding will position you to apply the large number of signal-processing methods that assume stationarity and use covariance to characterize signals.

Click here to purchase immediate access to this and every other (more than 120) lesson!

Primary Sidebar

Courses

  • Foundations

  • Time Domain LTI Systems

  • Fourier Series and Transforms

  • Sampling and Reconstruction

  • The DFT and Applications

  • The Z-Transform

  • Intro to Filter Design

  • IIR Filter Design

  • FIR Filter Design

  • Random Signal Characterization

  • Basis Representations of Signals

  • Estimation of Power Spectra and Coherence

  • Introduction to Signal Estimation and Detection Theory

  • MMSE Filtering and Least-Squares Problems

Copyright © 2023 ALLSIGNALPROCESSING.COM | Site Design by 3200 Creative

  • Terms of Service
  • Privacy Policy
  • Contact